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Abstract--The skin friction and heat transfer in turbulent two-component bubbly flows in pipes are 
modelled under the follov,-ing conditions. The flow is assumed to be vertical, steady, fully developed and 
to circulate in the upward direction. The modelling is based on two main arguments: first the persistence 
of the logarithmic velocity and temperature profiles near the wall for low values of the void fraction; 
second the similarity of the modifications caused by the bubbles on these profiles and those created by 
a grid in a single-phase turbulent boundary layer. The form of the friction and heat-transfer laws derived 
is in principle valid at low gas concentrations. However, comparisons with the local measurements 
presently available in this field and with the correlations of Lockhart & Martinelli and Martinelli & 
Nelson, show that the model works pretty welI up to 0.2-0.3 void fractions. 

1. I N T R O D U C T I O N  

As a rule the problems of two-phase two-component friction and heat transfer are highly complex, 
which results from the diversity of the mechanisms involved. As underlined by Collier (1972), the 
flow pattern plays an important role, so that each flow regime is often considered and analysed 
separately in the literature. Unfortunately, as pointed out by Michiyoshi (1978a) in a very complete 
critical review of the heat-transfer studies, the local characteristics of these various regimes are not 
always taken into account in such analysis and thus the influence of certain flow parameters is not 
perfectly understood. Fully aware of this situation, several workers adopt an original point of view 
and try to calculate the momentum and heat transfers in bubbly flows by modelling the turbulent 
structure of the liquid. This is the case of Sato et al. (1981) and Van der Welle (1981). Both authors 
write the equations governing the shear stress and heat flux distributions by using an eddy 
diffusivity subdivided into two terms. One is for the inherent wall turbulence, the other for the 
velocity fluctuations created by the bubbles. Sato chooses for the latter diffusivity a semi-empirical 
algebraic form and approximates the equations by a finite-difference formulation. The velocity and 
temperature fields are constructed by means of a numerical iterative method. The quantities to be 
assigned in the program are: the pipe diameter, the liquid mass flow rate and bulk temperature, 
the ~-profile and estimated values for the wall shear stress and heat flux. The velocity and 
temperature distributions are computed at each iteration. Finally, the liquid mass flow rate and 
bulk temperature are deduced and compared with prescribed values. The process is repeated, until 
consistent velocity and temperature fields are obtained. Van der Welle solves the shear stress 
equation in a reverse way. The velocity gradient at the surface is first determined by a simple 
method, well-tested in single-phase flows, but whose extension to gas-liquid flows is somewhat 
questionable. The value obtained is then substituted in this equation. The eddy diffusivity 
associated with bubble-induced pseudo-turbulence is derived by identifying the resulting expression 
with available experimental data on two-phase frictional pressure loss. 

The present paper deals with steady fully-developed upward bubbly flows in vertical pipes or 
channels. It proposes a rather different approach based on a local turbulence description. The latter 
is supported by the detailed measurements of Lance & Bataille (1982). In turbulent flow, any 
alteration of the skin friction drag or heat diffusion can be detected by a change in the velocity 
and temperature profiles within the boundary layers. In this perspective, it is therefore worth 
knowing whether the bubbles can originate such a change by influencing turbulence and whether 
the latter change is significant. There are presently a few experimental studies which enable us to 
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answer this question. Measurements by Serizawa et al. (1975) clearly indicate that in a low-quality 
upward bubbly flow in a pipe, the normal 1/7 power velocity profile is modified. The velocity near 
the pipe axis is hardly affected, but as one moves towards the surface, the shape becomes flatter, 
which results in more important gradients at the walt. This difference with turbulent single-phase 
flows is confirmed by various authors, such as Ohba er al. (1976) and Sato et al. (1981). The data 
of the latter authors are particulary interesting because they are the only ones to be plotted in the 
standard non-dimensional form U / U *  = f ( Y  ). In this form, it is noted that the logarithmic 
distribution persists with its usual slope and constant, whereas the initial wake function is strongly 
depressed. Now the same behaviour is observed in a single-phase turbulent boundary layer 
submitted to the action of a grid (Hancock 1980). It is tempting to conclude that the mechanism 
by which the profile is modified is connected with an increase in the external turbulence, as for 
the grid. We use this analogy and our knowledge of bubble-induced pseudo-turbulence to develop 
a simple model which predicts the resulting increases in the friction and heat-transfer coefficients. 
The efficiency of this model is validated by comparison with a few experiments and correlations. 

2. BASES OF THE M O D E L L I N G  

The bases of the modelling are now examined in detail. Figure 1 shows the velocity modifications 
caused by the bubbles, according to measurements by Sato et al. (1981). Very close to the wall, 
the void fraction is rigorously null which means that this part of the flow is entirely free of bubbles. 
As a consequence, the viscous sublayer still exists and here the velocity is given by the well-known 
linear velocity distribution 

~" rut 
- = Y _ ,  [ 1 ]  

U~ VL 

where subscript L = liquid, Y = distance from the wall, v = kinematic viscosity, superscript * = 
friction scales 

( ) U~' = ,~ L \ ~ . / /  =0 = new friction velocity 

and the operator - - x  denotes the usual phasic average (Ishii 1975). 
Above the sublayer, the void fraction increases up to a maximum by a mechanism which is still 

not completely understood. Due to the presence of the gas, the standard logarithmic profile is 
translated downward, indicating that the turbulence moves nearer to the wall. However, at low 
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Figure i. Mean velocity and void fraction profiles (Sato et al. 19811 in an upward bubbly flow in a pipe; 
. single-phase flow. 
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Figure 2. Defect velocity profile d rawn from the data of  Sato et  al. (1981); - - - -  • , single-phase flow. 

air qualities (figure 1) the translation is so slight that it is negligible. Therefore, we can consider 
that the velocity is still governed by 

~ '  1 
= - In Y+ + C, [2] 

U[ K 

where K and C stand for the usual constants. To the contrary, a significant change is exhibited 
in the core region. The wake function is strongly depressed, as also happens in a turbulent 
boundary layer submitted to an external turbulence (Hancock 1980). The result is that the wake 
strength H L [defined by Coles (1956)] in the logarithmic defect law is depressed too and becomes 
negative (figure 2). The corresponding shift_of the velocity profile can be written as 

= - -  In r / + -  [3] 
U[  K K '  

where /-/L is inferior to the value /7 without bubbles. Superscript 0 refers to the pipe axis and r/ 
is the ratio of Y to the pipe radius R. By analogy with the velocity, we expect in this region a similar 
effect on the profiles of temperature and, hence, equations in the form 

- - x  

~ -  0L 1 
0 ~ = K00 In Y+ + Co 

and 
-~Lx _ -~-~x 1 21-I oL , 

0~' = - K o o  l n r / +  Ko 

[4] 

[5] 

where subscript W = wall, subscript 0 = temperature, Ko, Co = constants in single-phase flows 
/-/oL = new value of  the wake strength 17 o (Floe </7o) and 0~' is the new friction temperature defined 
by 

q~w 
o 5  = - -  [61 

PL CpL U~ 

in which ~ = heat flux, p = density and % = specific heat. Under these conditions, the laws of 
friction and heat transfer, respectively, read 

and 

U-~L~ X/~.~L 1 C/-CFL 2/-/L 
--U~ = = ~ In ReL X/-- ~ -  + C + 

/co 
StL __ NUL -K 

~ ' - - C F L -  + C ~ L ( C e K o - C K  2/7eL--2/7L)' 
}- ReL VrL _--}-- 1 /--~-- K 

[7] 

[8] 
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where CF = friction coefficient, Re = Reynolds number based on the velocity at the centre of the 
pipe, Pr = laminar Prandtl number, Nu and St = the N~sselt and Stanton number, respectiveb. 
The term on the r.h.s, of [8] is a general expression for the Reynolds analogy factor (Simonich & 
Bradshaw 1978). It depends on Pr L through Co. At this level, it is clear that the determination of 
the two laws is equivalent to knowing the strength HL and FIoL related to the wake change caused 
by the bubbles. So as a first step, we need to find the parameters which they depend on. For that 
purpose, an extension of the dimensional analysis valid for turbulent wall-bounded shear flows 
(Tennekes & Lumle~ 1972) is used. This extension is presented in detail in the Appendix. It leads 
to the following conclusions. First, in the core of the flow, there is a subregion located away from 
the pipe axis and close to the outer edge of the wall layer, where the action of the bubbles on the 
wall turbulence is described by two adimensional groups L~/R and F~/U~: superscript s stands 
for the subregion and subscript B for the bubbles, L~ is the integral length scale of the eddies 
generated by the wall. By their kinetic energy, the bubbles tend to break these large eddies and 
hence to reduce their size. Therefore, L ;  is probably smaller than in single-phase flows; t7}3 denor, es 
the velocity scale of the fluctuations created by the bubbles. Second, the defect velocity profile in 
the subregion is expected to be given by a similarity law of the form 

c"t \ R U U  

As a result, a matching of this profile with that, unaffected, of the inner layer necessarily implies 

Hc = Hc ' U~] 

and, by analogy, 

n f-= \ R' Cl l] 

The previous relations suggest that the basic mechanism responsible for the wake change is the 
increase in the velocity fluctuations created by the bubbles. This is not surprising from a physical 
point of view. As a matter of fact, the momentum transfer being enhanced, it means that the mean 
velocity profile becomes flatter and subsequently, its wake component progressively vanishes. Such 
a behaviour is very similar to that observed when a grid turbulence is generated outside a 
single-phase boundary layer. This analogy incites us to identify the action of the bubbles with that 
of a fictitious grid, with a random mesh, which would increase the turbulence in the outer layer. 
Unfortunately, the data presently available in the field of bubbly flows are too incomplete for the 
functional dependence of/-/C and H0c on their arguments to be specified. The original idea of this 
paper consists of using the above-mentioned analogy, and hence the results relative to single-phase 
flows, to estimate these unknown functions. The first data concerning the effect of a free-stream 
turbulence on a boundary layer were reported about 20 years ago in the pioneer work of Kestin 
et al. (1961), and later in the studies of Charnay et al. (1971) and Bradshaw (1974). Since then, 
more detailed information has been published by Simonich & Bradshaw (1978), Hancock (1980), 
Blair (1983) and Castro (1984). Hancock's experiments, which are well-documented, were 
performed in a turbulent boundary layer on a flat plate, beneath a nearly homogeneous isotropic 
grid-generated turbulence. His results clearly indicate that the existence of external velocity 
fluctuations initiates and increase in the skin friction, in proportion to the scale g~ of these 
fluctuations, but also on the integral length scale Le "impressed" on the outer layer by the 
turbulence. This influence of L, was not examined in the previous works. The same behaviour is 
quoted for the heat-transfer coefficient (Simonich & Bradshaw 1978; Blair 1983). In both cases, 
the increase is related to a depression of the wake strength on the corresponding logarithmic defect 
profiles. Neglecting the Reynolds number effects, this may be represented by the adimensional laws 

of the type 

rlo=no\6  
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and 

/7o, =//0~ , , 

where subscript e denotes the external grid turbulence and b the boundary layer thickness. The 
parameter range covered by Hancock's study is a~ /~  4 0.07, where ~ = external mean velocity, 
0.7 ~< L~/6, <~ 4.9 and Re~. > 2000, where Re0, = Reynolds number based on momentum thickness 
d'. In this range, the skin friction increases in a roughly linear way and then rapidly begins to 
saturate. As noted by Castro (1984), the data suggest that the saturation process is probably due 

• ~ O' ~ W " to the persistence of the lot-law h~ch restricts further change in the mean flow properties, above 
a certain turbulent intensity. Accordingly, [12] and [13] can be expected to be valid in bubbly flows 
provided that L~/b: is replaced by L~/R and ~ / U *  by ~ / U ~ .  Then the modelling becomes simple. 

uB/UL. They can be determined Knowing H~ and//0~, the two terms to be expressed are L~/R and - s  , 

by means of the experimental results of Lance et al. (1984) and Michiyoshi & Serizawa (1985). In 
a second step, it is necessary to check that the form of He and 1-IoL obtained by substitution of 
the variables is consistent with measurements by Sato et al. (1981). The final step is the derivation 
of the laws of friction and heat transfer and their comparison with experimental data. 

The laws of variation of the wake strength /-/, and I-Io~ are not reported in the literature. 
Consequently, they must be inferred from the experimental curves describing the increases in 
CF, /CF and StflSt. To do that, we need a priori two relations, one between He and CF: /CF and 
another one between/7o, and StdSt. But, as proved by Blair's (1983) study, the wake depressions 
observed on the velocity and temperature profiles are quantitatively similar, whatever the intensity 
of the free-stream turbulence generated (ff,/U~ <<. 0.06). Thus, 

2 
AHoe = ~ (Ho~ - Ho) "~ AH~; [14] 

the second relation is in fact useless. From the friction laws, with and without external turbulence 
(Bradshaw 1974), one can show that for boundary layers with the same U*6/v, 

C~F~ 1 2 H) C~F~ 
X / - ~  - ~ ( / / ~ -  X/ ~ . [15] 

The second term on the r.h.s, is typically of the order of 0.2, so that 

- ~ J c ~ .  .... ~ ~ I - ~. (H, - ~ -~ . [16] 

In most experiments, CF, /CF is measured at U,6'/v const. As indicated in figure 3, a significant 
scatter exists in the experimental data. For the sake of simplicity, it is chosen to approximate the 
trend exhibited by Hancock's data by a straight line, the equation of which is 

-~/-~-:¢on~ ~ 1 -~ L~ 2 ~ "  [171 
v _ _ _ ~ _  

bo 
Such an approximation is relevant because it includes the aforementioned saturation process. The 
latter occurs when FSTP > 1. FSTP stands for the free-stream turbulence parameter introduced 
by Hancock to correlate his data. The question is how to connect [16] with [17]. Robertson & Holt's 
(1972) measurements suggest that the correlation between the change in the boundary layer 
thickness and the change ACF in the skin fraction coefficient can be roughly fitted by 

b 

6--0 ~ 1 + 1.5 \ CF ]ZF~o,,~ [181 

66 

for ~,/U, <<. 0.06. Bradshaw used this correlation to convert the increase of skin friction at const 
- -  t -~6/v, given by Charnay et al. (1971), to an increase at const U,6/v. Following his method, we 

find that the coefficient of proportionality in (CF¢/CF)_~_ .... ~ is smaller by 15/4 than for the ratio 
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at constant U,0/v, that is 
/ \ 10 fi~ cvo~ ~ 1 + - -  . El91 
\ - c - - f ) ~  .... , Lo c;o 

= - + 2  

The accuracy of such a conversion is of the same order as for correlation [18], i.e. about 10%. In 
addition, Bradshaw demonstrated that the difference between the skin friction ratio at f.l~6 !v const 
and its value at U*c~tv const remains of the order 0.1, i.e. of the same order as the measurement 
errors. So, we can identify [16] and [19] and write, within 10-20% error, 

2 5 ~, [20] A17~ = 2 (17° - n)  Lo u *  
- -  + 2 

Since A/7, and hence A17~ are known, the corresponding increase in Stanton number can be also 
calculated. According to [8], the Reynolds analogy factor is expressed by 

K0 
K Ste 

CF< 

2 

Defining the quantity p, by 

CoKe - C K  + 217o - 217 
P ' =  K 

and substituting [15] in [21] yields, to the first order in A17o, A//o~ , 

KO 

Ste K 

2 l + p ,  + AH~--A17, l + p ,  ~/ $ 

from which we deduce 

St, 1 - 2 A17 e ~/CFe 

1 +  l + p r  CF ~ 5 

[21] 
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Figure 3. Experimental evolution of ~CF/CF. FSTP = 100 ~e/U, (L,/3, + 2). Solid symbols, Hancock's 
(1980) measurements; open symbols and x, other author's data; (H), data of Charnay et el. ( i 9 7 1 ) ; -  
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Arguing that the second term in the denominator is negligible with respect to unit and retaining 
• ~'9 

only the first order in , /CF, /_ ,  we get 

(St,~ (St~'~ 1 ( A~_~% 
~ _ _  + [25] 

The equality between the wake strength variations ([14]) implies 

S t ] ~  .... ~ 1-2AHo 

which is equivalent to 

I i  p~ CF 

+p~ CN/c ~ 

I !  p~ CF 
(sto  10 

6~ + 2 +tOr ,/T 

[26] 

tTe 

W [27] 

We have now all the necessary elements for the laws of friction and heat transfer to be derived. 

3. DERIVATION OF THE LAWS OF SKIN FRICTION AND HEAT TRANSFER 

The main difficulty is the modelling of Lh/R and ~h/U~. Recent data obtained by Michiyoshi 
& Serizawa (1984) confirm that Lh/R decreases as the void fraction ~ increases. This is evidence 
that the large eddies are broken into smaller structures by the bubble agitation effect. Un- 
fortunately, due to the important scatter of the data, it is difficult to find a law which characterizes 
the ~-dependence of the integral length scale. As a first approximation, the decrease can be roughly 
considered as linear and represented by 

--~ --, 1 - 3 c~s. [ 2 8 ]  

In fact, the dependence is probably more complex and should perhaps include other parameters, 
such as the ratio between the bubble diameter and the pipe radius. Without any additional 
measurements, more assertive conclusions cannot be drawn. Thus [28] is adopted. 

Regarding the turbulence, the experiments of Lance & Bataille (1982) exhibit an important fact. 
They prove that the amplitude of the fluctuations created by the bubbles is strongly determined 
by the intensity ~ of the fluctuations existing in the liquid before the air injection. At low 
turbulent intensity, Lance et al. (1984) show that it is possible to calculate this amplitude from the 
velocity field around an isolated bubble. They find that in the longitudinal direction 

= x / ~  U-~R x, [29] 

where k(0.8 ~ k ~< 1.4) depends on the value of the parameters governing the trajectory of the 
bubble and U-~R x denotes its relative velocity. For certain applications, it is convenient to adopt an 
average value of k. We see in figure 4 that the choice k = 1.1 fits quite satisfactorily the fluctuations 
measured by hot-film anemometry (Lance & Bataille 1982) or LDA (Mari6 1983). In theory, [29] 
is only valid for very low void fractions. As a matter of fact, it does not account for the 
hydrodynamic interactions between the bubbles, which would involve an additional term of order 
:~2 Nevertheless, the experiments of Aoki (1982) and Michiyoshi & Serizawa (1984) show that the 
contribution of this term to the total bubble-induced pseudo-turbulence remains rather small up 
to gas concentrations of 10%. Assuming, in order to simplify, that the fluctuations generated by 
MF+ t 3 + ' ~  
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the bubbles are quasi-isotropic, it is then possible to take a~ equal to x/u~- and express . . . .  r r ,  ~ B /  ~ L a s  

a;  u-~ • 

Substituting [28] and [30] in [20], we finally obtain 

2 
A/TL = ~ (/TL - - /7)  

[30] 

5 . r-'Tg- x 

3(1 :~') 
[31] 

Let us see if this equation is consisterTi with the measurements of Sato et al. (1981). The values 
of the flow parameters corresponding to figure 3 are JL (superficial velocity) = 0.5 m/s, :~ = 0 . 1 5  

and U~ =0.038m/s .  There is no indication of the value of the slip velocity. However, 
U-~R" = 0.18 m/s seems to be a reasonable estimate, considering the experimental conditions. The 
shift in the wake strength calculated from these data is A/TL = --3.8, while the value determined 
from the velocity profile is -3 .2 .  

The agreement is quite good which tends to prove that the assimilation of the effect of the 
bubbles with that of a grid is physically relevant. This is an argument to write the resulting laws 
of friction and heat transfer. Replacing AH~ by A/7 L in [16] and [26] gives 

CF L 10 1/-i--i-~ s ~R x 
CF ~ 1 + ~ ) 3 ( 1  v ' . ' "  ~UL. 

[321 

and 

10 + 2  U-~ __~StL s R 
1-~ x / T ~  ~ .  [33] 

St 3(1 - ~s) C C ~  U L 
+ Pr 

At this level, it must be stressed that [17] and [29] are expressions whose validity is experimentally 
established over the respective ranges 5~/U-~ = 0 - 0.07 and :~ < 0.I0. For  this reason, and due to 
the approximations introduced in the derivation of [20] and [27], [32] and [33] are expected to work 
a priori  better at low values of the void fraction. To discuss this point and illustrate the efficiency 
of  the model a comparison with experiments is now presented. 

4. C O M P A R I S O N  WITH  E X P E R I M E N T S  

Since the model takes into account the local properties of the flow, it is appropriate for the 
comparison to choose the experiments in which the local increase in skin friction and heat transfer 
is measured. Such experiments are not numerous in the literature. 
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4. I. Skin friction 

Quite recently Souhar (1979), carried out an experimental study of the local wall shear stress 
in bubbly and slug regimes. The flow is circulating upward through a 44 mm i.d. vertical tube at 
atmospheric pressure and a regulated temperature of 291 K. The gas is axially injected through a 
conic mixer placed at the bottom of the tube. All the measurements are performed by means of 
a polarographic method (Lebouch6 & Cognet 1967) in a section located at Z/D = 120 
(Z = streamwise coordinate, D = pipe diameter). At this distance, one can agree with Herringe & 
Davis (1976) that the flow is developed. The increase in wail shear stress is measured at various 
superficial liquid velocities are between 0.15 and 1.35 m/s and various gas qualities X between 
0.27.10 -~ and 0.0263. The main difficulty when trying to compare these measurements with [32] 
is to find how to relate the local variables U-~L, ~s and U-~R ~ to the control parameters JL and X. 
Concerning the liquid velocity, the data of Serizawa et al. (1975) prove that at low gas qualities, 
U---~L ~ is equal to ~ or sometimes lower. Consequently, it is reasonable to assume ~ ~ JL. For 
the void fraction, the problem is more complex. Indeed saddle-shape or power law void fraction 
distributions are observed according to the investigators and their inlet geometry. 

In the saddle-shape pattern (figure 1) the void fraction profile exhibits a peak near the wall at 
a Y/R location of about 0.1-0.3. This coincides precisely with the location of the subregion 
previously referenced by the superscript s, so that 

c ~s = 21 = :~mak" [34] 

In the second pattern, Van der Welle (1985), in agreement with other authors, shows that the gas 
distributions are well-fitted by 

= ~m~x 1 --  [35] 

or, equivalently, by - -  

1 ( 1 + ! ) ( 2 + ! ) ( 1  r~¼ = ( ~ ) 5  - ~ j ,  [36] 

where the operator ( ) denotes the cross-sectional average. As a result, 

~ (  1 ) ( ! )  
e ~ = e ~ ~ ( e )  1+  n 2 +  0.2 .1. [37] 

There is considerable scatter in constant n since it may vary from 0.1 to 7. Choosing an average 
value n = 3.5 yields eL = 0.93 (2) .  Thus, e~ > :~ and it follows that the distinction between the two 
patterns is essential. Unfortunately, in most experiments presented here, information about the 
shape of the void fraction profile are missing or incomplete. In particular, when a saddle-shape 
exists, the value of ~'~ak is not systematically given. Under those conditions we have no other 
alternative but to take c~ ~ = (~) ,  whatever the gas distribution, and to keep in mind that this choice 
is appropriate to power law e profiles. Having outlined this, it remains to express U-~R x. For I-D 
vertical upward bubbly flows, Zuber & Hench (1962) propose to use the relationship 

U--RR ~ = U~ (1 - c¢)½, [38] 

where U~ is the terminal velocity of an isolated bubble rising in an infinite medium and (1 - e)J/:  
is a corrective term to take into account the bubble interactions. From all these arguments, we 
finally get 

CFL z-~wLx ~ 1 + 10 
C'---F- ~ z--~ 3(1 - ( ~ ) ) x / l ' l ( : ~ ) ( l  - (2 ) )  - ~  , [39] 

where Tw is the wall shear stress. 
In Souhar's experiment, the gas injected is nitrogen and the liquid is an electrolyte which has 

the same physical properties as pure water. No information on bubble size is given. However, 
according to the nature of the injection system and the range of liquid flow rate, one may estimate 
their mean diameter to be of the order of 3-5 mm. Under such conditions, the terminal velocity 
of these bubbles is probably the same as for equivalent air bubbles in water, i.e. U~ = 0.25 m/s (Cliff 
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Figure 5a. Evolution of  :--~,L~:T~Tw. Symbols - Souhar's (1979) measurements; J t = 0 . S m / s  (A), 
J t  = 1.08 m/s ( 0 )  Jc = 1.35 m/s (11). Curves - predicted values, (,'~ = 0.25 m~s. 

Figure 5b. Evolution of T--~.Lx:~wW. Symbols - Souhar's (198I) measurements; J , = 0 . S m / s  (A),  
JL = 1.5 m/s ( 0 )  Jc = 2.5 m/s (11). Curves - predicted values, U~ = 0.25 m s .  

et al. 1978). The calculation of ~--~L~/Y~w with this value yields the curves in figure 5a. The symbols 
represent the results of Souhar after the gas quality X has been converted into (~ by the Wallis 
(1969) relationship 

[A + (I - 

X = [PL (1 - -  ( :X) )  + pG ( ~ ) ] J L  + p o  ( :~ ) (1  - -  ( ~  })U-'~R ~" [40] 

Roughly speaking, the agreement between the measurements and the prediction ts not too bad. 
The curves and the symbols are pretty well concentrated around an average value Y~WL~/Y~w = 1.3. 
However, the real tendency is not perfectly reflected by the prediction. Souhar finds that the wall 
shear stress ratio rises sharply, reaches an asymptotic level and sometimes decreases while. 
according to our theory the increase in turbulence and hence in wall shear stress, is much more 
gradual and continuous. In fact, these behaviour differences are not difficult to understand. 
Souhar's measurements correspond to flows with saddle-shaped void fraction profiles for which 
[39] is not very well adapted. The proof is given by additional data obtained later (Souhar 1981) 
using the same facility, equipped with an annular wall injection. Measurements of the local void 
fraction are then systematically presented. They reveal the existence of the peaks and specify for 
each of the experimental conditions investigated the value o f  ~=k. Thus calculation of ~---~.L~/~w by 
taking ~ = ~r*ak is possible. It gives the curves in figure 5b. No deviation occurs, as in the previous 
case, and the agreement is good even at the highest values of the void fraction. The only significant 
difference is that noted at are = 0.5 m/s. Indeed, beyond (~)  = 0.15 measurements exhibit a decrease 
in skin friction which is not predicted by the model. As a rule, such a decrease is observed for 
superficial velocities < 1.5 m/s (see figure 5a). Over this range "blocking" effects are important and 
when the gas flow rate exceeds a critical value, recirculations are generated near the wall by the 
gradients of concentration. The transition to slug flow begins to take place. The negative wall shear 
stress fluctuations which result, cause the decrease of the algebraic average :WE x. Such a 
phenomenon has been disregarded in the present modelling. 

It is also possible to compare [39] with some global correlations. Of course, such correlations 
are known for sometimes exhibiting important deviations from experimental data. Thus, they 
cannot be considered as accurate enough for a reliable validation of the model. However. 
comparison is interesting because it illustrates the superiority of the present approach regarding 
the correlations universally used by engineers. Among these correlations, the most famous one is 
certainly that proposed by Lockhart & Martinelli (1949). Following their approach, the frictional 
pressure gradient (dP-~LX/dz)F in two-phase flow is obtained by 

dZ ]F ~L ~ ,L' 
where (d-P/dZ)FL is evaluated for the liquid flowing alone in the same tube and with the same flow 
rate as in two-phase flow; 4 [  is called the Lockhart-Martinelli factor. The momentum balance for 
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Figure 6. Comparison with the Lockhart-Martinelli correlation: ----, predicted values, U~ = 0.25 m/s; 
(1) JL = 0.82 m/s; (2) Je = 1.08 m/s; (3) JL = 1.35 m/s; (4) JL = 2 m/s. 

a pipe flow involves that 

and thus 

. x  

(dP-'LL~'~ -~4 ZwL [42] 
\ dZ ,IF D 

q) L = rw----~x [43] 

"~w 

The increase in wall shear stress can be calculated from [39] provided that the turbulent Reynolds 
number Re* = U~R/v L is high enough. For most pipe diameters, this condition is equivalent to 
assuming that the liquid and the gas are both turbulent. In this case ~ is denoted by ~.~ and 
generally approximated by 

20 1 
[tt ~ 1 + - -  + ---v, [44] 

;G Z?t 

where 

Subscript G = gas and/~ is the viscosity. 

= \ - 7 - /  
[45] 

The comparison of [39] with [44] is shown in figure 6. The parameter Ztt has been substituted 
for (:~) by means of [40]. Quite a correct agreement is observed especially at JL = 1.35 m/s. Above 
and below this value, the prediction significantly deviates from the curve ~[,,. This influence of 
the superficial velocity is still more obvious when considering the correlation of Martinelli & Nelson 
(1948). The latter is an adaptation of the previous method to steam-water flow. The frictional 
two-phase pressure drop (dP--£~/dZ)F is expressed from the frictional pressure drop of the liquid 
flowing alone in the tube with a flow rate equal to the total flow rate of the two-phase flow: 

The relationship between 40: (Martinelli-Nelson factor) and 4~[,, reads 

• o 2 = (1 - X) ~Ts ~.t~. [47] 
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It is convenient here to introduce the mass velocity 

G = pGJG + P:-JL [48] 
and to replace b-~R~ = U = ( 1 -  (s~)) ~: in [39] by 

- - x  /Jr D UD" [49] 
UR = (1 - (~ }) 

where Up is a drift velocity. Then we get 

V~R ~ PL Uo 
eL G(I - X )  [5o1 

and ( e )  can be eliminated by using the drift flux model proposed by Zuber & Findlay (1965): 

X 
<~> = , [51] co [x + (I - x) P°] + p° UD 

Pt.J G 
where Co is a constant. 

Thus [39] becomes a function of G, PG, PL, Up and X only and 4,~ can be calculated at various 
pressures and mass velocities. The possible values for Co and Uo are reported in Wallis (1969). 
Taking Co = 1 and 

1.53 PG)  ¼ UD = ag(p t  "f , [52] 
P[ 

where cr = surface tension and g = gravity, yields the curves in figure 7 for P = 68.9 b. The straight 
lines represent the variations of 40 according to Martinelli & Nelson and the homogeneous model 

[ ; ( )  ( 4,02= I +  P L - 1  l + X  uL \ p o  ~ -  1 . [53] 

We note that the theoretical curves coincide with the Martinelli-Nelson correlation when G is small 
and that they lie close to the homogeneous model as G increases. Now it is known that this model 
provides more accurate pressure drop estimates in the higher mass velocity ranges 
(G > 2000-2500 kg/m 2 s), while the correlation gives better results in the lower mass velocity range 
(G < 1000 kg/m 2 s). We conclude that the mass velocity is an important parameter whose influence 
is well taken into account in the present model. 

500 kq/m 2 s 
P -68.9 bar 

1.5 l /  / /  / G 
1 / /  , 1000 kg/m2s 

Rg/m 2 s 

1.0 

I I I I I l l l l  I 1 [ i I [ l l [  I I I i I I I I 1 [  I 1 [ I I L J t J  

10-5  10-4 10-3 10-2 10 -~ 

X 

Figure 7. Compar ison with the Martinell i-Nelson correlation (1) and the homogeneous  model (2); 
• predicted values. 
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4.2. Heat transfer 

Regarding heat transfer, comparison is made with the data obtained by Bobkov et al. (1973) 
in a gas-water pre-mix flowing upward through a 28.9 mm dia vertical pipe. The measuring section 
is located at Z / D  = 66 and hence the flow may be considered at almost developed. The 
temperatures in the gas-water mixture and at the inner surface are determined by means of 
Chromel-Alumel thermocouples having junctions 0.2 mm dia. The uncertainty of the mea- 
surements is estimated to be <0.1°C. The nature of the gas, the size of the bubbles and the Prandtl 
number are not specified. So we suppose that the terminal velocity of the bubbles is of order 
0.25 m/s and that Pr is close to 7. Having underlined this, the calculation of the heat transfer 
increase is performed with the same a )proximations as in section 4.1, that is 

- -  = ~ g 3 o  StL hL~  10 +-5-" v 2 X/I.I<:>(I_(cC))_~._L, 
St h 1+3(1_(~)) l+pr C/~ [541 

where h = heat-transfer coefficient and CF is determined by the classical formula 

--5- = 0.0395 [55] 
- \ • E l  

while Pr is evaluated by taking K = 0.41, Ko = 0.47, 2II /K = 21-lo/K o = 0.65, C = 4.9 and Co under 
the form suggested by Kader & Yaglom (1972): 

Co = 12.5 Pr ] + 2.12 In Pr - 5.3. [56] 

The corresponding curves are shown in figure 8. The symbols denote the experimental data. 
These data were initially plotted vs the volumetric quality ft. The latter has been changed into (~ )  
by using the Wallis correlation. The agreement between experiment and prediction is satisfactory 
which makes any comment pointless. It clearly demonstrates that the model works well up to void 
fractions of order 0.3, which was unexpected a priori owing to the limitations of our model. 

From the curves in figures 5a, b and 8, we deduce that StL/St as T--~-~/~w increases significantly 
even when (:c) is small, exactly as was observed by Lance & BataiUe (1982) on the turbulent 
intensity. On the other hand, the fact that for (~ )  const the increase is greater for the low values 
of JL is connected with a similar effect on the turbulence whose explanation can be found in the 
same reference. 

Measurements of local heat transfer have been performed more recently by Michiyoshi (1978b) 
in an upward air-water flow through a vertical annulus in bubbly and slug regimes. The test section 
is composed of two concentric cylinders whose diameters are 12 and 52 ram. The inner wall of the 
annulus is the only one to be heated. Two cases are dealt with: (a) air is mixed with the water stream 
at the inlet of the annulus; and (b) air is injected into the water stream through small holes at the 
heater surface. In both configurations the measuring point is located at a distance Z = 1.8 m 
downstream from the inlet of the test section. The bubble diameter is 3 mm and the Prandtl number 
is equal to 6.56 in case (a) and 7.19 in case (b). Because of the geometry, the calculation of StL/St 
from [54] seems to be difficult here. Nevertheless, the difficulty is overcome when one considers the 

2 Pr=7 

_5__2 e ~  v - v  

1 J v ' A ~  - 

l I I 
0.1 0.2 0.3 

Figure 8. Evolution of  StL/St. Symbols--measurements of  Bobkov et a/. (19"/3); JL = 0.52 m/s ( t ) ,  
JL = 0.71 m/s (W), JL = 1.04 m/s (A).  Curves--predicted values, U:~ = 0.25 m/s. 
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Figure 9. Evolution of St L 'St. Symbols [case (a) = solid symbols, case (b) = open symbols]--Michiyoshi's 
(1978b) measurements; JL=O.64m/s (@O), JL=0.88m,:s (Y~7), JL=l.14ms (A~). Curves-- 

predicted values, U~ = 0.25 m/s. 

flow along the inner cylinder as a turbulent boundary layer on a flat plate. Then, referring to 
Schlichting (1960), CF is given by 

-5- = 0.0296 [57] 
_ \ vL / ' 

whereas Pr is determined by taking 2 H / K  = 2Ho/K o = 2.35. The result is the curves in figure 9. The 
symbols represent the data of Michiyoshi (1978b). As in Bobkov et al. (1973), (~ )  has been 
substituted for the volumetric quality/3. 

We note that the theory provides values which are generally lower than the experimental data. 
This is explained by three different reasons. The first is obviously the simplication introduced in 
the calculation by approximating the cylinder by a fiat plate, but this is not the most sensitive. The 
second is the error made by neglecting the void fraction peaks. Here we know from measurements 
that such peaks exist and that there amplitude is larger in case (b) than in case (a). This is precisely 
why the heat-transfer coefficients in figure 9 are larger in case (b). The last reason is that the flow 
is certainly more complex than expected which, according to Fernholtz & Vagt's (1981) obser- 
vations, could be due to the existence of extra phenomena, such as swirling effects, tridimensionality 
of the boundary layers, separation, a.s.o. Under such conditions, it is not suitable to emphasize 
the discrepancy between prediction and experiment. 

5. CONCLUSION 

Through an original approach, we derive the laws of friction and heat transfer for turbulent 
two-component upward bubbly flows in vertical pipes. This approach is essentially based on 
turbulence considerations. A simple model developed within this framework provides the increase 
of drag and heat-transfer coefficients for arbitrary values of the Prandtl number, the mean void 
fraction (7 )  and the mean velocities of the two phases. Comparison with experimental data 
exhibits fairly good agreement up to void fractions of order 0.3. Such a model could still be 
improved if the action of the bubbles on the integral length scale of  wall turbulence were better 
evaluated. For that purpose, it would be essential to dispose of detailed measurements in which 
the influence of the void fraction, the bubble diameter and the pipe radius would be systematically 
isolated and analysed. 

Acknowledgement--The author expresses his gratitude to Dr Lance for his useful comments. 

REFERENCES 

AoKI, S. 1982 Eddy diffusivity of momentum in bubbly flow. M.S. Thesis, Kyoto Univ., Kyoto, 
Japan (in Japanese). 



MODELLING OF SKIN FRICTION AND HEAT TRANSFER 323 

BLAIR, M. F. 1983 Influence of flee-stream turbulence on turbulent boundary layer heat transfer 
and mean profile development. Parts I & II. ASME Jl Heat Transfer 105, 33--47. 

BOBKOV, V. P., IBP, A~I,~OV, M. K., TvcmYsrdI N. A. & FEDOTOVSKII, V. S. 1973 Thermal diffusion 
in a turbulent water stream with gas bubbles. Zhenerno Fiz. Zh. 24, 551-557. 

BRADSHAW, P. 1974 Effect of free-stream turbulence on turbulent shear layers. Aeronautical 
Research Council Paper 35648, pp. 1-12. 

CASTRO, I. P. 1984 Effects of free-stream turbulence on low Reynolds number boundary layers. 
ASME Jl Fluid Engng 106, 298-306. 

C~ARYAV, G., COM~-BELLOT, G. & MA~IEU, J. 1971 Development of a turbulent boundary layer 
on a flat plate in an external turbulent flow. AGARD CP 93, No. 27. 

CLIFf, R., GRACE, J. R. & WEBER, M. E. 1978 Bubbles, Drops and Particles. Academic Press, New 
York. 

COLES, D. 1956 The law of the wake in turbulent boundary layer. J. Fluid. Mech. 1, 191-226. 
COLLIER, J. G. 1972 Convectice Boiling and Condensation, pp. 382-406. McGraw-Hill, London. 
DREW, D. A. & LAHEV, R. T. 1982 Phase-distribution mechanisms in turbulent low-quality 

two-phase flow in a circular pipe. J. Fluid. Mech. 117, 91-106. 
FERNHOLTZ, H. H. • VAGT, J. D. 1981 Turbulence measurements in an adverse pressure-gradient 

three-dimensional turbulent boundary layer along a circular cylinder. J. Fluid. Mech. 111, 
233-269. 

HAYCOCK, P. E. 1980 The effect of free-stream turbulence on turbulent boundary layers. Ph.D. 
Thesis, Imperial College, London (available on microfiche from the author). 

HERRINGE, R. A. & DAVIS, M. R. 1976 Structural development of gas-liquid mixture flows. J. Fluid. 
Mech. 73, 97-123. 

ISHn, M. 1975 Thermo-fluid Dynamic Theory of Two-phase Flow. Eyrolles, Paris. 
KADER, B. A. & YAGLOM, A. M., 1972 Heat and mass transfer laws for fully turbulent wall flows 

Int. J. Heat Mass Transfer 15, 2329-2350. 
KESZIN, J., MAEDER, P. F. & WANG, H. E. 1961 Influence of turbulence on the transfer of heat 

from plates with and without a pressure gradient, lnt. J. Heat Mass Transfer 3, 133-154. 
LANCE, M. & BATArLLE, J. 1982 Turbulence in the liquid phase of a bubbly air-water flow. In 

NATO Specialist's Meeting. Martinus Nighoff, The Hague, The Netherlands. 
LANCE, M., MARIt~, J. L., CHARNAY, G. & BATAILLE, J. 1979 Les 6quations de la turbulence dans 

un 6coulement diphasique incompressible en absence de transfert de masse. C.r. Acad. Sci., Paris, 
Ser. A 288, 957-960. 

LANCE, M., MARII~, J. L. & BATAILLE, J. 1984 Mod61isation de la turbulence de la phase liquide 
dans un 6coulement ~i bulles. La Houille Blanche 3, 255-260. 

LANCE, M., MARII~, J. L. & BATAILLE, J. 1985 Homogeneous turbulence in bubbly flows. Presented 
at ASME Winter A. Mtg, Miami Beach, Fla. 

LEBOUCH/~, M. & COGNET, G. 1967 La polarographie, moyen d'6tude du mouvement des liquides. 
Chimie [ndustrie-Gknie Chimique 97, No. 12. 

LOCKHART, R. W. & MARTINELLI, R. C. 1949 Proposed correlation of data for isothermal 
two-phase, two-component flow in pipes. Chem. Engng Prog. 45, 39-48. 

MARIE, J. L. 1983 Investigation of two-phase bubbly flows using laser Doppler anemometry. PCH 
JI 4, 103-108. 

MARTINELLI, R. C. & NELSON', D. B. 1948 Prediction of pressure drop during forced circulation 
boiling of water. Trans. ASME 79, 695-702. 

MICHIYOSHI, I. 1978a Two-phase two-component heat transfer. Proc. 6th Int. Heat Transfer Conf., 
Toronto 7, 219-233. 

MICHrYOSHI, I. 1978b Heat transfer in air-water two-phase flow in a concentric annulus. Proc. 6th 
Int. Heat Transfer Conf., Toronto 1, 499-504. 

MICHIYOSHI, I. & SERIZAWA, A. 1984 Turbulence in two-phase bubbly flows. Presented at 
Japan/U.S. Semin. on Two-Phase Flow Dynamics, Lake Placid, N.Y. 

OHBA, K., KISHIMOTO, I. & OGAZAWARA, M. 1976 Simultaneous measurement of local liquid 
velocity and void fraction in bubbly flows using a gas laser. Tech. Rep. Osaka Univ. 26, 547-556. 

ROBERTSON, J. M. & HOLT, C. F. 1972 Stream turbulence effects on turbulent boundary layers. 
J. hydraul. Div. Proc. ASCE 98(HY6), 1095-1099. 



324 J L. MA~IE 

SATO, Y., SADATOMI, M. & SEKOGUCHI, K. t981 Momentum and heat transfer in two-phase bubble 
flow, Parts I & II. Int. J. Multiphase Flow 7, 167-190. 

SCHLICHTING, H. 1960 Boundary Layer Theory. McGraw-Hill. New York. 
SERIZAWA, A., KATAOKA, I. & MICHIYOSHI, I. 1975 Turbulence structure of air-water bubbly flows. 

Part II: local properties. Int. J. Multiphase Flow 2, 235-246. 
SIMONICH, J. C. & BRADSHAW, P. 1978 Effect of a free-stream turbulence on heat transfer through 

a turbulent boundary layer. ASME Jl Heat TransJ'er 100, 671-677. 
SOUHAR, M. 1979 Etude du frottement parirtal dans les &oulements diphasiques en conduite 

verticale, cas des r~gimes a bulles et fi poches. Th~se de Docteur-Ing~nieur, Institut National 
Polytechnique de Lorraine, France. 

SOtN~R, M. 1981 Contribution ~i l 'rtude dynamique des ecoulements diphasiques gaz-liquide en 
conduite verticale: cas des rrgimes ~i bulles et ~i poches. Thrse d'Etat, Institut National 
Polytechnique de Lorraine, France. 

TENNEKES, H. &. LUMLEY, J. L. 1972 A First Course in Turbulence, pp. 146-196. MIT Press, 
Cambridge, Mass. 

VAN DER WELLE, R. 1981 Turbulence viscosity in vertical adiabatic gas-liquid flow. Int. J. 
Multiphase Flow 7, 461-473. 

VAN DER WELLE, R. 1985 Void fraction, bubble velocity and bubble size in two-phase flow Int. J. 
Multiphase Flow 11, 317-345. 

WALLIS, G. B. 1969 One-dimensional Two-phase Flow. McGraw-Hill, New York. 
ZUBER, N. & FINDLAY, J. A. 1965 Average volumetric concentration in two-phase flow systems. 

J. Heat Transfer 87, 453-468. 
ZUBER, N. & HENCH, J. 1962 Steady state and transient void fraction of bubbling systems and their 

operating limit: Part I. Steady state operation. General Electric Report 62 GL 100. 

APPENDIX 

Extension of the Usual Dimensional Analysis for the Core Region 

Let consider the momentum equation in the longitudinal direction. For a steady fully-developed 
two-phase flow, it reduces (Drew & Lahey 1982) to 

1 dP-[ ~ 1 d [- , db-~L'-] 
0-- PL- -+dZ  r~rr r [ - - (1-- :Qu-7~+vL(1--z~)--~7-r  l --g(l-- :~) ,_ [A.I] 

where Z = axial coordinate, r = R - Y = radial coordinate, PLL ~ = phasic average of the pressure 
and UrVL ~= phasic average of the Reynolds stress. Elimination of d-P-[~/dZ and integration from 
0 to r yields 

;0 --(1--~)Ukt'--'-~x'k-VL(1- :~) dLT[~d--7- = ---R , ,  (:~) 2--r g-r :tr dr, [A.2] 

where (~ )  is defined by (~> = 1/StR 2 j'2 2rcr :~ dr. 
In the core region, the viscous stress is negligible and [A.2] is approximated by 

r g ~ r dr. [A.3] r U , ~ , _ + g ( : ~ > 5 _  r - - ( 1 - - ~ ) U L V L  = - - ~  _ - 

We deduce that (1 -x)ULV-----~ ~---, U~" in the limit as r-- ,R. In other words, there is a subregion 
located approximately between r/R = 0.7 and 0.9, i.e. at the outer edge of the wall layer, where 
ULVL ~ is likely of order U¢:. Unfortunately, we have no explicit information on ~--[x itself within 
this subregion. So we must examine another equation, e.g. that describing the turbulent energy 
budget in the boundary layer. According to the formulation by Lance et al. (t979) this equation 
is expressed by 

, < ' -  
--(1--:~)uLVL ~rr +pB=(1- - :~)CL~+ -r~r r ( 1 - z ~ ) \  PL + - " 

The turbulent kinetic energy, called qL, has mainly two origins. One part is generated by the 
Reynolds stress --ULVL ~. The other part is produced by the bubbles. This production, whose rate 
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m 

is denoted by Ps, involves two mechanisms. The one is associated to the bubble wakes, the other 
to the acceleration of the liquid surrounding the interfaces. When the bubbles have reached their 
terminal velocity, which is the case here, both mechanisms are steady and it follows that P--~ is 
constant. Moreover, as observed by Lance et al. (1985), ~ is exactly balanced by the rate ~ of 
viscous dissipation which occurs in the boundary layers around the bubbles and in their wakes. 
This suggests that the total disipation rate UL" is the sum of two statistically independent 
contributions, respectively E~ ~ and the viscous dissipation rate ~x of the structures generated by the 
stress --ULUL x. From these arguments, we can write 

dU--~L~ = (1 - ~)~x + _ r(1 - co) + . [A.5] 
--(1--:0uLvL dr rdrr \ PL 

In this equation, as in [A.4], the viscous transport of 1/2 qL has been neglected. Consequently, we 
disregard the case where the turbulent Reynolds number is low. Having underlined this point, we 
estimate the order of magnitude of the remaining terms in the forementioned subregion. We know 
from [A.3] that the Reynolds stress -ULVL ~, and hence the kinetic energy that it produces, is of 
order U[:. Let us define L~ as the length scale of the eddies containing this energy and ~ as the 
velocity scale of the fluctuations created by the bubbles. We may expect ?* to be of order U[3/L~ 
and qL of order U~ 2 + ff~2. Then the transport term (on the r.h.s, of [A.5]), which is of order q~'2/R 
times qL, must be of order (U~ 2 + ~)3,"-/R. Since the bubbles tend to break the large eddies, L~ 
is likely to be smaller than its corresponding value without gas, i.e. smaller than the pipe radius 
R. Thus in the sub-region, the action of the bubbles on the wall turbulence is described by two 
adimensional groups L~/R  and - s  , uB/U L . We conclude from [A.5] that the mean velocity gradient 
must also depend on these groups. By integration we deduce that the defect velocity profile in the 
subregion must be of the form 

F / Ur - trZ/ [A.6J 


